Ursachen von Fahrzeug-Rückrufen frühzeitig mit Pre-Error-Detection reduzieren

Laut dem aktuellen Stout Automotive Defect & Recall Report 2020 haben die Software-bedingten Fahrzeugrückrufe im Jahr 2019 Rekordniveau erreicht. Tatsächlich gingen zwei der umfassendsten Rückrufe (einschließlich eines Sicherheitsrückrufs) auf die Fahrzeugsoftware zurück. Bei schätzungsweise 6,5 Millionen Fahrzeugen, die wegen Defekten an elektronischen Bauteilen zurückgerufen wurden, wurde an der Software nachgebessert. Damit ist 2019 das Jahr mit den bislang meisten Software-bedingten Rückrufaktionen.

Wie bei jedem Rückruf führen Software-bedingte Probleme nicht nur zu direkten Kosten für die Automobilhersteller, sondern auch zu einem schlechten Nutzererlebnis für die Kunden. Den Automobilherstellern stellt sich daher vor allem eine entscheidende Frage: Wie kann man Softwareprobleme erkennen und beheben, bevor sie zu Fehlfunktionen führen und schlimmstenfalls ein Rückruf erforderlich wird?

Die Antwort darauf lautet Predictive Software Maintenance. Anstelle des bisherigen Ansatzes, Probleme erst dann zu beheben, wenn sie Fehlfunktionen verursachen, nutzt Predictive Maintenance Echtzeitdaten und Machine-Learning-Algorithmen, um Anomalien und potenzielle Fehlerquellen zu identifizieren, bevor sie behoben werden müssen. Das ist effizienter und wirtschaftlicher.

Ein Beispiel für Predictive Maintenance ist die Wartung von Bremsen, die mit der Zeit langsam verschleißen. Die Werkstatt wartet mit dem Wechsel der Bremsbeläge nicht bis die Bremsen versagen. Stattdessen verlassen sich Mechaniker auf ihre Erfahrung, um das Bremsversagen vorauszusagen und die Beläge rechtzeitig auszutauschen. Eine Line-Of-Code Behavior-Technologie macht im Prinzip dasselbe für Fahrzeugsoftware.

Line-Of-Code Behavior-Technologie
– ermöglicht es Fahrzeugherstellern, proaktiv zu handeln statt nur auf Softwarefehler zu reagieren. Dadurch gelingt eine frühzeitige Fehlererkennung.
– nutzt Machine-Learning-Algorithmen um das Softwareverhalten über einen längeren Zeitraum zu überwachen und vorherzusagen, wann eine Fehlfunktion auftreten wird.
– identifiziert genau die Codezeilen, die ein Problem verursachen. Das reduziert die Zeit vom Auftreten eines Problems bis zu seiner Lösung und verschafft den Herstellern die nötige Zeit, um die Software zu reparieren, zu testen und zu zertifizieren, bevor ein Update veröffentlicht wird.
– identifiziert, welcher Teil des Softwarecodes geändert wurde. Das ermöglicht möglichst kleine Update-Dateien, um die Kosten zur Datenübertragung zu reduzieren.
– installiert die neue Software per OTA-Update ohne Ausfallzeit auf dem Fahrzeug. Das ermöglicht einen nahtlosen, kontinuierlichen Verbesserungsprozess

* * * * *

Publiziert durch PR-Gateway.de.

Veröffentlicht von:

Aurora Labs

Emmy-Noether-Ring 18
85716 Unterschleißheim
Deutschland
Telefon: +49 89 2154 2434
Homepage: http://www.auroralabs.com

Ansprechpartner(in): Rudolf von
Pressefach öffnen

Firmenprofil:

Aurora Labs bietet zukunftssichere Lösungen für Predictive Maintenance von Connected Cars und Smart Buildings. Die selbstheilende Plattform von Aurora Labs ermöglicht die proaktive Softwarewartung mit Machine Learning, um Fehler und Risiken in der Software von Steuergeräten zu erkennen, zu bewerten und zu beheben.
Mehr unter www.auroralabs.com

Informationen sind erhältlich bei:

HBI Helga Bailey GmbH
Stefan-George-Ring 2
81929 München
auroralabs@hbi.de
089 / 99 38 87 30
http://www.hbi.de
7 Besucher, davon 1 Aufrufe heute