Mechanische Eigenschaften biologischer Gewebe einfach(er) beschreibbar

  • Aktualisiert vor10 Monaten 
  • 5Minuten Lesezeit
  • 905Wörter
  • 86Leser

Vereinfachtes Berechnungsmodell für Gewebeeigenschaften an Karl Landsteiner Privatuniversität für Gesundheitswissenschaften Krems (Österr.) entwickelt

Krems, 16. Februar 2022 – Viskose mechanische Eigenschaften biologischer Gewebe lassen sich nun einfacher als bisher beschreiben. Das zeigt eine jetzt veröffentlichte Arbeit eines Teams der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften Krems. Diesem gelang der Nachweis, dass ein etabliertes mathematisches Modell für weiche biologische Gewebe stark vereinfacht werden kann. Noch immer erlaubt es dann eine korrekte Beschreibung des Gewebeverhaltens unter zyklischer mechanischer Belastung. Diese Vereinfachung ermöglicht umfangreiche Zeit- und Kostenersparnis bei medizinisch notwendigen Vergleichen und Charakterisierung verschiedener Gewebetypen.

Ob ein Gewebe krank oder gesund ist, lässt sich oftmals auch anhand dessen mechanischen Eigenschaften diagnostizieren – wenn man diese kennt, korrekt beschreiben und objektiv vergleichen kann. Genau zu diesem Zweck wurden mathematische Beschreibungsmodelle entwickelt, die sich in der Praxis bewähren, aber durchaus umfangreicher Messungen und Kalibrierungen bedürfen. Einem Team des Departments für Anatomie und Biomechanik der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften Krems (KL Krems) gelang es nun, ein weltweit akzeptiertes Modell radikal zu vereinfachen und so zukünftig Zeit- und Kostenersparnisse bei der Gewebecharakterisierung zu ermöglichen.

Harte Fakten für weiches Gewebe
Konkret nahm sich das Team um Studienleiter Prof. Dieter Pahr dem „Adaptive Quasi-linear Viscoelastic (AQLV)-Modell“ an. Dieses Modell beschreibt Eigenschaften weicher biologischer Gewebe unter Berücksichtigung komplexer Mechanismen bei veränderlicher mechanischer Belastung (Zugkräften). Prinzipiell ist dieses Modell sehr flexibel, da es für unterschiedliche Belastungsstärken gilt, doch geht diese Flexibilität mit einem hohen Preis einher, wie Prof. Pahr erläutert: „Je flexibler ein mathematisches Modell ist, desto mehr Materialparameter müssen bestimmt werden. Dazu kommt, dass mit zunehmender Anzahl an Parametern die Vergleichbarkeit zwischen verschiedenen Geweben immer schwieriger wird. Daher haben wir uns das AQLV-Modell noch einmal genauer angeschaut.“

Und tatsächlich gelang es dem Team in einer aufwendigen experimentellen Arbeit, die für das Modell notwendigen Parameter drastisch zu reduzieren. So wird im ursprünglichen Modell das zu untersuchende Gewebe (mathematisch) in 3 Schichten aufgeteilt, die es zu berechnen gilt. Dazu sind zur Kalibrierung 4 Belastungsexperimente (incremental ramp-holding) notwendig. „In der Praxis müssen so insgesamt 19 Parameter kalkuliert werden, um das Modell richtig einzustellen“, meint Prof. Pahr. „Das haben wir auf 8 reduzieren können, was eine Zeitersparnis von 50% bei den Experimenten erlaubt.“

Exzellente Experimente
Durchgeführt wurden die Studien an Schweinemuskel und -leber, die als experimentelle Modelle etabliert sind. Dem Team kam dabei auch das exzellent ausgestattete Biomechanik-Labor der KL (Core Facility am Campus Krems) zugute, das sich in vielen verschiedenen Forschungsprojekten mit den materiellen Eigenschaften von biologischen Geweben befasst. Speziell dieses Projekt wurde in Zusammenarbeit mit der ACMIT GmbH in Wiener Neustadt und unterstützt durch das FTI Programm des Landes Niederösterreich (NÖ) realisiert. So gilt der Fachbereich Biomechanik in NÖ als führend bei der Beurteilung von Knocheneigenschaften, dem 3D-Druck künstlicher biologischer Gewebe und der Herstellung von künstlichen Organen für medizinische Trainingszwecke.

Vor dem Hintergrund dieser umfassenden praktischen und experimentellen Erfahrung seines Teams meint Prof. Pahr: „Natürlich ist das ursprünglich AQLV-Modell mit seinen vielen Parametern unter bestimmten Umständen gut geeignet, Aussagen zu machen – doch muss im medizinischen oder wissenschaftlichen Alltag oft abgewogen werden, ob die so gewonnene Aussagekraft den dafür notwendigen Aufwand rechtfertigt. Wenn nein, dann ist das von uns vorgeschlagene Modell in vielen Fällen ein echter Gewinn.“ Die nun im Journal of the Mechanical Behavior of Biomedical Materials veröffentlichte Arbeit reflektiert somit einmal mehr den Zugang der Forschung an der KL Krems im Bereich der Medizintechnik, die auf anwendungsnahe Erkenntnisse mit echtem Nutzen für die klinische Forschung fokussiert.

Fotos auf Anfrage verfügbar

Originalpublikation: A parameter reduced adaptive quasi-linear viscoelastic model for soft biological tissue in uniaxial tension. O. J. Aryeetey, M. Frank, A. Lorenz, S-J. Estermann, A. G. Reisinger, D. H. Pahr. J Mech Behav Biomed Mater Vol. 126, Feb. 2022, doi.org/10.1016/j.jmbbm.2021.104999

Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (Stand Februar 2022)
An der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (KL) in Krems ist die umfassende Betrachtungsweise von Gesundheit und Krankheit eine grundlegende Zielsetzung für Forschung und Lehre. Die KL stellt mit ihrem europaweit anerkannten Bachelor-Mastersystem eine flexible Bildungseinrichtung dar, die auf die Bedürfnisse der Studierenden, die Anforderungen des Arbeitsmarkts ebenso, wie auf die Herausforderungen der Wissenschaft abgestimmt ist. In den Studienrichtungen Medizin und Psychologie studieren aktuell rund 600 Studierende. Die vier Universitätskliniken in Krems, St. Pölten, Tulln und Eggenburg gewährleisten eine klinische Lehre und Forschung auf höchstem Qualitätsniveau. In der Forschung konzentriert sich die KL auf interdisziplinäre Felder mit hoher gesundheitspolitischer Relevanz – u.a. der Medizintechnik, der molekularen Onkologie, der mentalen Gesundheit und den Neurowissenschaften sowie dem Thema Wasserqualität und den damit verbundenen gesundheitlichen Aspekten. Die KL wurde 2013 gegründet und von der Österreichischen Agentur für Qualitätssicherung und Akkreditierung (AQ Austria) akkreditiert.

Wissenschaftlicher Kontakt 
Prof. Dieter Pahr
Dept. Anatomie und Biomechanik, Fachbereich Biomechanik
Karl Landsteiner Privatuniversität für Gesundheitswissenschaften
Dr.-Karl-Dorrek-Straße 30
3500 Krems / Österreich
T +43 2732 720 90 330
E dieter.pahr@kl.ac.at
W http://www.kl.ac.at/

Karl Landsteiner Privatuniversität für Gesundheitswissenschaften
Mag. Barbara Peutz
Kommunikation, PR & Marketing
Dr.-Karl-Dorrek-Straße 30 
3500 Krems / Österreich

T +43 2732 72090 230

E barbara.peutz@kl.ac.at

W http://www.kl.ac.at/

Redaktion & Aussendung
PR&D – Public Relations
für Forschung & Bildung
Dr. Barbara Bauder
Kollersteig 68
3400 Klosterneuburg / Österreich
T +43 664 1576 350
E bauder@prd.at
W http://www.prd.at/

Firmenprofil:

PR&D ist ein erfahrener und engagierter Partner für Forschungsmarketing, Science-PR und Wissenschaftskommunikation. Junge Start-ups vertrauen uns dabei genauso wie nationale Forschungsinstitute, Hochschulen oder internationale Technologieführer. Für sie und andere führen wir erfolgreiche PR-Kampagnen durch. Selbstverständlich nutzen wir dabei alle bewährten und modernen Kanäle der Kommunikation.

Informationen sind erhältlich bei:

PR&D - Public Relations für Forschung & Bildung
Kollersteig 68
3400 Klosterneuburg
T +43 664 2269 364
E contact@prd.at
W http://www.prd.at